首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40139篇
  免费   4079篇
  国内免费   2353篇
电工技术   813篇
综合类   3124篇
化学工业   11450篇
金属工艺   5607篇
机械仪表   1455篇
建筑科学   2588篇
矿业工程   924篇
能源动力   528篇
轻工业   5057篇
水利工程   380篇
石油天然气   2412篇
武器工业   520篇
无线电   1615篇
一般工业技术   5810篇
冶金工业   2853篇
原子能技术   186篇
自动化技术   1249篇
  2024年   79篇
  2023年   490篇
  2022年   1106篇
  2021年   1277篇
  2020年   1192篇
  2019年   1084篇
  2018年   1146篇
  2017年   1517篇
  2016年   1570篇
  2015年   1725篇
  2014年   2080篇
  2013年   2126篇
  2012年   2761篇
  2011年   3038篇
  2010年   2322篇
  2009年   2396篇
  2008年   1898篇
  2007年   2789篇
  2006年   2555篇
  2005年   2251篇
  2004年   1865篇
  2003年   1640篇
  2002年   1408篇
  2001年   1155篇
  2000年   966篇
  1999年   873篇
  1998年   721篇
  1997年   531篇
  1996年   503篇
  1995年   385篇
  1994年   345篇
  1993年   214篇
  1992年   208篇
  1991年   124篇
  1990年   61篇
  1989年   49篇
  1988年   34篇
  1987年   22篇
  1986年   11篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   7篇
  1979年   4篇
  1975年   1篇
  1973年   2篇
  1959年   5篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
In this work, chemical crosslinking with 1,4-butanediol diglycidyl ether (BDDGE) is used as strategy to enhance mechanical performance of fish gelatin (FG) gels in order to meet the properties' range of mammalian gelatin physical gels. Joint analysis of free amino groups, swelling ratio, and total soluble material indicates that crosslinking degree increases with increasing FG concentration and it is favored by a 0.2 BDDGE/FG ratio. Increasing crosslinking degree enhances gel indentation strength and shear modulus (μ) while decreases fracture toughness (GIC). Measured μ and GIC values lies within the range exhibited by mammalian gelatin physical gels, but the relationship between these parameters is opposite. This is due to the different fracture mechanisms occurring in chemically crosslinked and physical gels.  相似文献   
72.
The aim of this research is to evaluate the effect of polyphosphoric acid (PPA) on the mechanical performance of styrene–butadiene–styrene (SBS) and styrene–butadiene–rubber (SBR) modified asphalt. Conventional properties, multiple stress creep recovery (MSCR), bending beam rheometer (BBR), and linear amplitude sweep (LAS) tests were conducted to evaluate the performance characteristics of asphalt at different PPA inclusions. Gel-permeation chromatography (GPC), saturates, aromatics, resins, and asphaltenes (SARA), and Fourier transform infrared (FTIR) were carried to reveal the molecular weight, component and infrared spectra of asphalt. Results showed that PPA hardened the asphalt, improved the rutting and fatigue performances of polymer modified asphalt (PMA) binder, but weakened the anti-cracking performances. Besides, storage stability had a significant improvement as the addition of PPA. The addition of PPA brought more macromolecules into asphalt and led to more high-average molecular weight compounds. Furthermore, PPA changed four component ratios of asphalt. Both PMA with or without PPA have similar absorption peaks. This may be due to absorption peak of PMA covered the changes in PPA modification process as the low content of PPA. 0.8% dosage of PPA may be considered optimum for composite modified binder combining the above experimental results for this binder source.  相似文献   
73.
Waterborne star-shaped styrene-alkyd resins (SSARs) were synthesized from a branched alkyd resin (AR) and styrene (St) by miniemulsion polymerization. SSARs are an environmentally friendly material. The ratio of AR to St for obtaining SSARs was as follows: 50:50 (SSAR1), 60:40 (SSAR2), 70:30 (SSAR3), and 80:20 (SSAR4). The conversion percentage was directly proportional to St used, and was higher than 94.0 %. Infrared analysis and protonic nuclear magnetic resonance revealed the reaction between AR and St. The synthesis process also leads to the formation of polystyrene and its concentration increases with the concentration of St. The values of the reacted double-bond fractions were higher than 17.80%. The SSARs drop size was bigger than the particle size. The miniemulsion colloidal stability was good at room temperature. The SSARs zeta potential was between −55 and −90 mV. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48386.  相似文献   
74.
《Ceramics International》2020,46(7):9170-9175
NASICON-structured sodium vanadium fluorophosphate has caused widespread concern for sodium energy conversion and storage because of its high voltage platform and high theoretical energy density. However, the inferior electrical conductivity is still a big problem, which greatly prevent the applications of Na3V2(PO4)2F3 material. Herein, the nitrogen-doped graphene-encapsulated Na3V2(PO4)2F3@C (NG-NVPF@C) has been prepared using the sol-gel approach. The physical and electrochemical performances for the resulted NG-NVPF@C composite have been systematically characterized and compared with that of Na3V2(PO4)2F3@C (NVPF@C) in this study. The electrochemical tests demonstrate that the as-fabricated NG-NVPF@C displays higher capacity, superior rate property and better cyclic life than NVPF@C. It displays the discharge capacity of 108.6 mAh g−1 at 5C. Moreover, it also possesses the high capacity of 101.6 mAh g−1 at 10C over 300 cycles with the capacity retention of about 96.5%. The improved properties of NG-NVPF@C electrode are assigned to the constructed conductive network by nitrogen-doped graphene, which can modify the conductivity of Na3V2(PO4)2F3.  相似文献   
75.
76.
Na0.5+δBi0.5(Ti0.96W0.01Ni0.03)O3 thin films with various Na contents (abbreviated as Na.5+δBTWN, δ?=?? 3.0, ??1.5, 0, 1.5%) were fabricated on ITO/glass substrates using a chemical–solution process. The effects of Na nonstoichiometry on the microstructure, insulating, ferroelectric and dielectric performances are investigated. The pure perovskite phase can be obtained in Na0.5BTWN and Na0.515BTWN, while for Na0.470BTWN or Na0.485BTWN, the main composition contains secondary phase of TiO2. The grain size increases from 30?nm at δ?=?? 3.0% to 55?nm at δ?=?0%, then decreases to 52?nm with δ?=?1.5%. The leakage current of Na0.485BTWN sample is reduced dramatically in comparison with Na0.5+δBTWN (δ?=?? 3.0, 0, 1.5%). The big recoverable energy–storage density of 63.1?J/cm2 and high energy–storage efficiency of 55.0% can be obtained for Na0.485BTWN due to the improved electric break–down strength and large difference value between the remanent polarization and maximum polarization. Enhanced dielectricity is achieved in Na0.485BTWN with a high tunability of 36.0% and a figure of merit of 4.0 at 450?kV/cm and 500?kHz. These results demonstrated that the crystallization, micrographs and energy storage and dielectric properties of Na0.5Bi0.5TiO3 are highly sensitive to low levels of Na–site nonstoichiometry.  相似文献   
77.
Elongated β–Si3N4 crystals have a significant influence on the mechanical property of Fe–Si3N4 composite. In this paper, the formation mechanism of elongated β–Si3N4 crystals in Fe–Si3N4 composite was investigated. During the preparation process, β–Si3N4 crystals developed in a spiral and layer growth mechanism in the dense areas. They kept growing from the dense areas and formed radially distributed elongated crystals with hexagonal prismatic morphology as time went on. As for the formation mechanism, the (100) crystal plane of β–Si3N4 from Si-N-O melt is mainly the vicinal crystal planes growth with different angles from the (100) crystal plane. At the later stage, the crystallization and the diffusion forces in Si-N-O molten phase decreased. However, the short range diffusion remained active and resulted in the gradient distribution of N content near the boundary. With the temperature decreasing, the disappearance of the short range diffusion implied the end of the crystallization process of the elongated β–Si3N4 crystals.  相似文献   
78.
The Ceramic On-Demand Extrusion (CODE) process is a novel additive manufacturing method for fabricating dense (~99% of theoretical density) ceramic components from aqueous, high solids loading pastes (>50?vol%). In this study, 3?mol% Y2O3 stabilized zirconia (3YSZ) specimens were fabricated using the CODE process. The specimens were then dried in a humidity-controlled environmental chamber and afterwards sintered under atmospheric conditions. Mechanical properties of the sintered specimens were examined using ASTM standard test techniques, including density, Young’s modulus, flexural strength, Weibull modulus, fracture toughness, and Vickers hardness. The microstructure was analyzed and grain size measured using scanning electron microscopy. The results were compared with those from Direct Inkjet Printing, Selective Laser Sintering, Lithography-based Ceramic Manufacturing (LCM), and other extrusion-based processes, and indicated that zirconia specimens produced by CODE exhibit superior mechanical properties among the additive manufacturing processes. Several sample components were produced to demonstrate CODE’s capability for fabricating geometrically complex ceramic components. The surface roughness of these components was also examined.  相似文献   
79.
Biologically structured carbon/cerium dioxide materials are synthesized by biological templates. The microscopic morphology, structure and the effects of different oxidation temperatures on materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) ultraviolet-visible light spectrum (UV–Vis) and X-ray Photoelectron Spectroscopy (XPS). Moreover, by splitting water under visible light irradiation, the hydrogen production is measured to test the photocatalytic property of these materials. The results show that materials made with bamboo biological templates which are immersed in 0.1 mol L?1 of cerium nitrate solution, then carbonizated in nitrogen (700 °C) and oxidized in air (500–600 °C), can obtain the biological structure of bamboo leaves. The product is in the composition of hybrid multilayer membrane, which one is carbon membrane form plant cell carbonation and another is ceria membrane by nanoparticle self assembly. The best oxidation temperature is 550 °C and the band gap of carbon/cerium dioxide materials synthesized at this optimum oxidation temperature could be reduced to 2.75 eV. After exposure to visible light for 6 h, the optimal hydrogen production is about 302 μmol g?1, which is much higher than that of pure CeO2.  相似文献   
80.
The focus of this work is to prepare polyvinyl alcohol (PVA) thin film reinforced by green synthesized zirconia nanoparticles. In order to do so, firstly, zirconia nanoparticles were synthesized by the rosemary extract-assisted sol-gel process as both template and stabilizing agents. The results showed that the as-obtained sample with zirconium salt to rosemary extract ratio of 1:4 had a semi-spherical morphology with the mean particle size of 12–17?nm. This nanoparticle was added as reinforcement with different ratios to the polyvinyl alcohol matrix. The mechanical property of the as-prepared nanocomposites revealed that the elastic modulus of 1?wt% ZrO2-PVA sample was about 5.5 times higher than pure PVA thin film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号